
Chapter 4

Generics

Concepts:
. Motivation for Parameterized Types
. Simple Parameterized Types
. Parameterization in Vector

Thank God that
the people running this world

are not smart enough
to keep running it forever.

—Arlo Guthrie

THE MAIN PURPOSE OF A LANGUAGE is to convey information from one party
to another. Programming languages are no exception. Ideally, a language like
Java lets the programmer express the logic of an algorithm in a natural way,
and the language would identify errors of grammar (i.e., errors of syntax) and
meaning (semantics). When these errors are flagged as the program is com-
piled, we call them compile-time errors. Certain logical errors, of course, do not
appear until the program is run. When these errors are detected (for example,
a division-by-zero, or an object reference through a null pointer) Java generates
runtime errors.1 It is generally believed that the sooner one can detect an error,
the better. So, for example, it is useful to point out a syntax error (“You’ve for-
gotten to declare the variable, cheatCode, you use, here, on line 22.”) where
it occurs rather than a few lines later (“After compiling Lottery.java, we no-
ticed that you mentioned 4 undeclared variables: random, range, trapdoor, and
winner.”). Because a runtime error may occur far away and long after the pro-
gram was written, compile-time errors (that can be fixed by the programming
staff) are considered to be preferable to runtime errors (that must be fixed by
the public relations staff).

Java 5 provides some important language features that shift the detection of
certain important errors from runtime to compile-time. The notion of a generic
class is one of them. This chapter is about building generic classes.

1 Even after considering compile-time and runtime errors, there are many errors that even a run-
ning system cannot detect. For example, undesirable infinite loops (some are desirable) are often
the result of errors in logic that the computer cannot detect. The word “cannot” is quite strong here:
it is impossible to build an environment that correctly identifies any program that loops infinitely
(or even more broadly–fails to halt). This result is due to Alan Turing.



70 Generics

4.1 Motivation (in case we need some)

In Chapter 3 we constructed the Vector class, a general purpose array. Its pri-
mary advantage over arrays is that it is extensible: the Vector can be efficiently
lengthened and shortened as needed. It suffers one important disadvantage:
it is impossible to declare a Vector that contains exactly one type of object.
Ponder this: we almost always declare variables and arrays to contain values of
one particular type, but Vectors hold Objects. As we have seen, an Object can
hold any reference type, so it is hardly a restriction. How can we construct a
Vector restricted to holding just String references?

Of course, you could depend on your naturally good behavior. As long as
the programs you write only add and remove Strings from the Vector, life will
be good. As an example, consider the following (silly) program:

LongWords

public static void main(String[] args)

{

Vector longWords = new Vector();

int i;

for (i = 0; i < args.length; i++) {

if (args[i].length() > 4) {

longWords.add(args[i]); // line 12

}

}

...

for (i = 0; i < longWords.size(); i++) {

String word = (String)longWords.get(i); // line 31

System.out.println(word+", length "+word.length());

}

}

This main method builds a Vector of long arguments—Strings longer than 4
characters—and, sometime later, prints out the list of words along with their
respective lengths. If we type

java LongWords Fuzzy Wozzie was a bear

we expect to get

Fuzzy, length 5

Wozzie, length 6

But programming is rarely so successful. Suppose we had instead written

for (i = 0; i < args.length; i++) {

if (args[i].length() > 4) {

longWords.add(args); // line 12

}

}

On line 12 we are missing the index from the args array in the call to add.This mistake is
silly, but most
mistakes are.

Instead of adding the ith argument, we have added the entire argument array,
every time. Because we have no way to restrict the Vector class, the program
compiles correctly. We only notice the mistake when we type



4.1 Motivation (in case we need some) 71

java LongWords Fuzzy Wozzie had no hair

and get

Exception in thread "main" java.lang.ClassCastException: [Ljava.lang.String;

at LongWords.main(LongWords.java:31)

The problem is eventually recognized (on line 31) when what we thought was
a String (but is actually an array) is removed as an Object (O.K.) and cast to a
String (not O.K.). Notice if our broken program is run with only short words:

java LongWords aye but what a bear that Fuzz was

no runtime error occurs because no words are added to the Vector.

4.1.1 Possible Solution: Specialization

Another solution to our problem would be to create a specialized class, a String-
Vector that was similar to the Vector class in every way, except that Objects
are replaced with Strings. The add method, for example, would be declared:

StringVector

public class StringVector implements Cloneable

{

protected String elementData[]; // the data

protected int elementCount; // number of elements in vector

...

public void add(String obj)

{

ensureCapacity(elementCount+1);

elementData[elementCount] = obj;

elementCount++;

}

}

Compare this with the code that appears in Chapter 3 on page 51.
There are several things to note about this approach. First, it works. For

fun, we create a similar (erroneous) program, LongWords2, that makes use of
the StringVector:

LongWords2

public static void main(String[] args)

{

StringVector longWords = new StringVector();

int i;

for (i = 0; i < args.length; i++) {

if (args[i].length() > 4) {

longWords.add(args); // line 12

}

}

...

for (i = 0; i < longWords.size(); i++) {

String word = longWords.get(i); // line 31

System.out.println(word+", length "+word.length());

}

}



72 Generics

Instead of using Vector we use StringVector. The compiler knows that the
add method must take a String, so passing an array of Strings to the add
method generates the error:

LongWords2.java:12: cannot find symbol

symbol : method add(java.lang.String[])

location: class StringVector

longWords.add(args);

^

The success of this technique leads us to the following principle:N

NW

SW
SE

NE

W

S

E

Principle 7 Write code to identify errors as soon as possible.

Here, (1) the actual source of the logical error was identified, and (2) it was
identified at compile-time.

To accomplish this, however, we had to write a new class and modify it
appropriately. This is, itself, an error-prone task. Also, we must rewrite the
class for every every new contained type. Soon we would be overwhelmed by
special-purpose classes. These classes are not related in any way and, it should
be noted, our original class, Vector, would never be used. Imagine the difficulty
of adding a new method to the Vector class that you wished to make available
to each of your specialized versions! A better solution is to create a generic class
or a class parameterized by the type of data it holds.

4.2 Implementing Generic Container Classes

Ideally, we would like to be able to construct container types, like Associations
and Vectors, that hold objects of one or more specific types. At the same time,
we would like to write each of these classes once, probably without prior knowl-
edge of their client applications. If this were possible, we could provide much of
the polymorphic utility of these classes as they were implemented in Chapters 1
and 3, and still identify errors in data types at compile-time. In Java 5, generic
or parameterized data types provide the programmer the necessarily flexibility.

4.2.1 Generic Associations

For simplicity, we first consider the signatures of the protected data and several
of the methods of the Association class, declared using parameterized types:2

Association

package structure5;

public class Association<K,V>

{

2 The remainder of this text describes classes of the structure5 package. The structure package
provides Object-based implementation, for backward comparability with pre-Java5 compilers. Both
the structure and structure5 packages are available in a single jar file, bailey.jar, that may
be inserted in your CLASSPATH.



4.2 Implementing Generic Container Classes 73

protected K theKey; // the key of the key-value pair

protected V theValue; // the value of the key-value pair

/*

for example:

Association<String,Integer> personAttribute =

new Assocation<String,Integer>("Age",34);

*/

public Association(K key, V value)

// pre: key is non-null

// post: constructs a key-value pair

public V getValue()

// post: returns value from association

public K getKey()

// post: returns key from association

public V setValue(V value)

// post: sets association's value to value

}

At the time of their declaration, parameterized class name are followed by a list
of comma-separated type parameters in angle brackets. This book follows the
common convention that type parameters are indicated by single capital Latin
letters.3 In this example, K is a place holder for the type of the association’s
key, while V will be used to represent the actual type of the association’s value.
Within the class definition, these type variables may be used wherever class
names are used: declaring data variables and declaring method parameters and
return values. The one constraint is that

Generic types may not appear in array allocations.

The reason is technical and obviously not of concern in our declaration of
Associations.

The code associated with the generic implementation of the Association
class is, at this point, straightforward. For example, the setValue method would
be written:

public V setValue(V value)

{

V oldValue = theValue;

theValue = value;

return oldValue;

}

3 There is some dispute about this convention. See your instructor. Professional driver, closed
course. Your mileage may vary. Danger, Will Robinson. Some identifiers too small for three year
olds.



74 Generics

Notice that there are no casts in this code: since the value is declared to be of
type V, and since the return value for setValue is the same, no cast is necessary.
The removal of casts is a sign that type checking will happen in the compiler
and not while the program is running.

To make use of the generic version of a class, we must specify the actual
parameter types associated with the formal types demanded by Association.
For example, a new Association between a String and an Integer would be
declared:

Association<String,Integer> personAttribute =

new Assocation<String,Integer>("Age",34);

(Hotdoggers: the 34 here is, yes, autoboxed4 into an Integer.) Of course, if
the Association is declared within a class that is itself parameterized, formal
type parameters may be specified. We will see this on many occasions in future
chapters.

4.2.2 Parameterizing the Vector Class

We now consider the parameterization of a significant container class, Vector.
Because of the way that Vectors are implemented, there will be special techni-
cal details (associated with arrays) that pertain, for the most part, only to the
Vector class. Most other structures will avoid these difficulties because theyYeah, and if we

eat our spinach
now, we won’t

get E. coli later.

will make use of parameterized Vectors, and therefore build on the work we
do here. Still, for the purposes of efficiency, it may be useful to declare struc-
tures that make direct use of the array-based techniques described here.

(The reader may find it useful to review the implementation of the non-
generic Vector as declared in Chapter 3 before following along here, where the
technical details of the Vector implementation will not be reviewed.)

One thing seems fairly obvious: the parameterized Vector class should be
defined in terms of a single type—the type of each element within the Vector.
The declaration of the major method signatures of the Vector class is as follows:

Vector

public class Vector<E> extends AbstractList<E> implements Cloneable

{

private Object elementData[]; // the data

protected int elementCount; // number of elements in vector

protected int capacityIncrement; // the rate of growth for vector

protected E initialValue; // new elements have this value

protected final static int defaultCapacity = 10; // def't capacity, must be>0

public Vector()

// post: constructs a vector with capacity for 10 elements

4 Two syntactic features of Java 5 include autoboxing and its inverse, -unboxing. With autobox-
ing, primitive types are automatically “boxed” into their object equivalents if doing so would fix
a type incompatibility. In addition, the corresponding object types will be converted to primitive
equivalents, if necessary.



4.2 Implementing Generic Container Classes 75

public Vector(int initialCapacity)

// pre: initialCapacity >= 0

// post: constructs an empty vector with initialCapacity capacity

public Vector(int initialCapacity, int capacityIncr)

// pre: initialCapacity >= 0, capacityIncr >= 0

// post: constructs an empty vector with initialCapacity capacity

// that extends capacity by capacityIncr, or doubles if 0

public Vector(int initialCapacity, int capacityIncr, E initValue)

// pre: initialCapacity, capacityIncr >= 0

// post: constructs empty vector with capacity that begins at

// initialCapacity and extends by capacityIncr or doubles

// if 0. New entries in vector are initialized to initValue.

public void add(E obj)

// post: adds new element to end of possibly extended vector

public E remove(E element)

// post: element equal to parameter is removed and returned

public boolean contains(E elem)

// post: returns true iff Vector contains the value

// (could be faster, if orderedVector is used)

public E get(int index)

// pre: 0 <= index && index < size()

// post: returns the element stored in location index

public void insertElementAt(E obj, int index)

// pre: 0 <= index <= size()

// post: inserts new value in vector with desired index,

// moving elements from index to size()-1 to right

public E remove(int where)

// pre: 0 <= where && where < size()

// post: indicated element is removed, size decreases by 1

public E set(int index, E obj)

// pre: 0 <= index && index < size()

// post: element value is changed to obj; old value is returned

}

First, it is important to note that the Vector holding objects of type E, the
Vector<E> class, implements AbstractList<E>. Anywhere where an Abstract-

List<E> is required, Vector<E> may be provided.5 The E in the Vector<E>

identifies the formal type parameter, while the E of AbstractList<E> is used

5 This reads like a law journal. A technical point important to note here is that a Vector<E>

does not have any relation to Vector<S> if S is a subclass of E. For example, you cannot assign a



76 Generics

to provide an actual type parameter to the AbstractList class. This, of course,
presumes that the AbstractList class has been implemented using a single
generic type parameter.

At the top of the declaration, we see the instance variables and constants
that are found in a Vector. The initialValue variable holds, for each object,
the value that is used to fill out the Vector as it is extended. Typically (and, in
most constructors, by default) this is null. Clearly, if it is non-null, it should
be a value of type E. The values elementCount, capacityIncrement, and the
constant defaultCapacity are all ints, unconstrained by the choice of the pa-
rameterized type.

The variable elementData is an extensible array (the array the supports the
Vector’s store): it should contain only objects of type E. Again, because of a
technical constraint in Java6, it is impossible to construct new arrays of any
type that involves a type parameter. We must know, at the time the class is
compiled, the exact type of the array constructed.

But this goes against our desire to construct a parameterized array of type E.
Our “workaround” is to construct an array of type Object, limit the type of the
elements to E with appropriate casts within mutator methods, and to declare the
array private eliminating the possibility that subclasses would be able to store
non-E values within the array.7 When values are retrieved from the array, we
can be confident that they are of the right type, and using casts (that we know
are trivial) we return values of type E.

Let’s look at the details. Here is the implementation of the most general
Vector constructor:

public Vector(int initialCapacity, int capacityIncr, E initValue)

{

Assert.pre(initialCapacity >= 0, "Nonnegative capacity.");

capacityIncrement = capacityIncr;

elementData = new Object[initialCapacity];

elementCount = 0;

initialValue = initValue;

}

The Vector constructor does not mention the <E> type parameter in its name.
Why? The type parameter is obvious because the constructor declaration ap-
pears within the class Vector<E>. When the value is constructed, of course,

Vector<Integer> to a Vector<Number>, even though Integer values may be assigned to Numbers.
You might think about why this is the case: Why is this the case?
6 This constraint is related to the fact that every assignment to the array at runtime forces a runtime
check of the data type. This check is necessitated by the fact that, over time, alternative arrays—
arrays of different base types—can be assigned to a single array reference. Unfortunately Java 5
does not transmit parameterized type information to the running program. This means that param-
eterized types cannot be exactly checked at runtime, but they should be. The easiest way to enforce
correct checking is to make it impossible to construct arrays of parameterized types. We expect
future implementations of Java will address this issue, and that David Ortiz will be the American
League Most Valuable Player, but good things take time.
7 See more about privacy rights in Appendix B.8.



4.2 Implementing Generic Container Classes 77

the actual parameter appears within the new statement (see the example on
page 78). Within the constructor, the supporting array is allocated as a logically
empty array of Object, and the initial value (type E) is cached away within the
type. Is there any way that a non-E value can be stored in elementData, using
this method? No. The method ensures the safety of the types of Vector’s values.
If we ask this question for each mutator method, and the answer is uniformly
No, we can be sure the Vector contains only the correct types.

Now, consider a method that adds a value to the Vector:

public void add(E obj)

// post: adds new element to end of possibly extended vector

{

ensureCapacity(elementCount+1);

elementData[elementCount] = obj;

elementCount++;

}

The Vector is expanded and the new value is appended to the end of the array.
Is there a possibility of a type error, here? In a more extensive review, we might
check to make sure ensureCapacity allows only type E values in elementData.
(It does.) The second and third statements append an object of type E to the ar-
ray, so there is no opportunity for a non-E value to be assigned. Incidentally, one
might wonder what happens if the add method were called with a non-E type. It
is precisely what happens in the StringVector example at the beginning of the
chapter: an exception is raised at the site of the call, during compilation. We’ll
review this in a moment.

Next, we consider the get method. This accessor method retrieves a value
from within the array.

public E get(int index)

{

return (E)elementData[index];

}

By assumption (and eventually through proof) we believe the safety of the array
is intact to this point of access. Every element is of type E, even though it appears
in a more general array of Objects. The cast of the value, while required, will
always hold; runtime type errors will never occur at this point. The method,
then, returns a value of type E.

The set method is a combination of the prior two methods. It is useful to
convince yourself that (1) the method is type-safe, and (2) the cast is necessary
but always successful.

public E set(int index, E obj)

{

Assert.pre(0 <= index && index < elementCount,"index is within bounds");

E previous = (E)elementData[index];

elementData[index] = obj;

return previous;

}



78 Generics

It is, of course, possible to make type mistakes when using the Vector class.
They fall, however, into two distinct categories. Vector implementation mis-
takes may allow elements of types other than E into the array. These mistakes
are always possible, but they are the responsiblity of a single programmer. Good
design and testing will detect and elminate these compile-time and runtime er-
rors quickly. The second class of errors are abuses of the Vector<E> class by
the client application. These errors are unfortunate, but they will be reported
at compile-time at the appropriate location, one that focuses the programmer’s
attention on the mistake.

We can now test our new implementation on working code and then attempt
to break it. In LongWords3, we consider, yet again, the implementation of our
program that checks for long argument words. The implementation makes use
of a Vector<String> as follows:

LongWords3

public static void main(String[] args)

{

Vector<String> longWords = new Vector<String>();

int i;

for (i = 0; i < args.length; i++) {

if (args[i].length() > 4) {

longWords.add(args[i]); // line 12

}

}

...

for (i = 0; i < longWords.size(); i++) {

String word = longWords.get(i); // line 31

System.out.println(word+", length "+word.length());

}

}

Because the Vector<String> only contains String elements, there is no need
for a cast to a String on line 31. This makes the running program safer and
faster.

If the add statement were incorrectly written as:

longWords.add(args); // line 12: woops!

the compiler would be confused—we’re passing an array of Strings to a class
that has only methods to add Strings. The resulting error is, again, a missing
symbol (i.e. a missing method) error:

LongWords3.java:12: cannot find symbol

symbol : method add(java.lang.String[])

location: class java.util.Vector<java.lang.String>

longWords.add(args);

^

The compiler cannot find an appropriate add method.
By the way, you can get the behavior of an unparameterized Vector class by

simply using Vector<Object>.



4.2 Implementing Generic Container Classes 79

4.2.3 Restricting Parameters

There are times when it is useful to place restrictions on type parameters to
generic classes. For example, we may wish to implement a class called a Num-
ericalAssociation, whose keys are always some specific subtype of java.lang.Number.
This would, for example, allow us to make an assumption that we could com-
pute the integer value by calling intValue on the key. Examples of declarations
of NumericalAssociations include: “numerical”

means
“numeric”NumericalAssociation<Integer,String> i;

NumericalAssociation<Double,Integer> d;

NumericalAssociation<Number,Object> n;

NumericalAssociation<BigInteger,Association<String,Object>> I;

We declare the NumericalAssociation class as follows:

public class NumericalAssociation<K extends Number,V>

extends Association<K,V>

{

public NumericalAssociation(K key, V value)

// pre: key is a non-null value of type K

// post: constructs a key-value pair

{

super(key,value);

}

public int keyValue()

// post: returns the integer that best approximates the key

{

return getKey().intValue();

}

}

The extends keyword in the type parameter for the class indicates that type K is
any subclass of Number (including itself). Such a constraint makes it impossible
to construct an class instance where K is a String because String is not a
subclass of Number. Since the Number class implements the intValue method,
we can call intValue on the key of our new class. This type restriction is called
a type bound.

Realize, of course, that the type bound bounds the type of class constructed.
Once the class is constructed, the particular types used may be more restric-
tive. The class NumericalAssociation<Double,Object> supports keys of type
Double, but not Integer. The NumericalAssociation<Number,Object> is the
most general form of the class.

By the way, the same extends type bound can be used to indicate that a type
variable implements a specific interface. An Association whose key is a Number
and whose value implements a Set of keys is declared as

public class NSAssociation<K extends Number, V extends Set<K>>

extends Association<K,V>

We have only touched on the complexities of parametric type specification.



80 Generics

4.3 Conclusions

When we write data structures, we often write them for others. When we write
for others, we rarely know the precise details of the application. It is important
that we write our code as carefully as possible so that semantic errors associated
with our data structures occur as early as possible in development and as close
as possible to the mistake.

We have seen, here, several examples of generic data types. The Association
class has two type parameters, and is typical in terms of the simplicity of writ-
ing generalized code that can be tailored for use in specific applications. Formal
type parameters hold the place for actual type parameters to be specified later.
Code is written just as before, but with the knowledge that our structures will
not sacrifice the type-safety of their client applications.

There is one “fly in the ointment”: we cannot construct arrays of any type
that involves a formal type parameter. These situations are relatively rare and,
for the most part, can be limited to the some carefully crafted code in the Vector
class. When array-like storage is required in the future, use of the extensible
Vector class has one more advantage over arrays: it hides the difficulties of
manipulating generic arrays.

Type bounds provide a mechanism to constrain the type parameters that ap-
pear in generic class specifications. These bounds can be disturbingly complex.

The remainder of this text demonstrates the power of the generic approach
to writing data structures. While the structure of these data types becomes
increasingly technical, the nature of specifying these structures in a generic and
flexible manner remains quite simple, if not natural.


